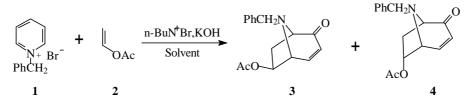
1, 3-Dipolar Cycloaddition Reaction between Vinyl Acetate and N-Alkyl Hydroxypyridinium Halide


Shun Fu ZHOU, Jing Yu SU, Long Mei ZENG*

School of Chemistry and Engineering, Zhongshan University, Guangzhou 510275

Abstract: 1, 3 Dipolar cycloaddition reaction between vinyl acetate and 3-hydroxypyridiniun betaine was performed under solid-liquid phase transfer catalytic condition. This reaction has been successfully used on the synthesis of an analogue of Bao-Gong-Teng A. **Keywords:** 1, 3-Dipolar cycloaddition, 3-hydroxypyridiniun betaines, dipolarphiles.

The 1, 3-dipolar cycloaddition reaction between 3-hydroxypyridiniun betaines and a great variety of dipolarphiles, such as $CH_2=CH-CN$, $CH_2=CH-COCH_3$, $CH_2=CH-COOCH_3$, $CH_2=CH(CH_3)-COOCH_3$ were first investigated by Alan R. Katritzky *et al.*¹⁻³. Generally, the olefinic dipolarphiles containing a strongly electron-withdrawing group are more active. Vinyl acetate **2** is an electron-rich dipolarphile, it is very difficult to carry out 1, 3-dipolar cycloaddition reaction with 3-hydropyridinium betaines. For shortening the reaction steps of the synthesis of Bao-Gong-Teng A **5**⁴ and its analogue **6**, the 1, 3 cycloaddition reaction between **2** and betaine **1** have been studied (**Scheme 1**). Herein, we report an improved procedure to perform this reaction.

Scheme 1 1, 3-Dipolar cycloaddition reaction between N-benzyl-3hydroxypyridinium bromide and vinyl acetate

Et₃N was first chosen for generating ylide. There was no cycloadduct could be found. When Lewis acid was used, vinyl acetate polymerized quickly. However, when **1** and vinyl acetate **2** (10 equiv) with solid KOH (1.5 equiv) were stirred in EtOAc at r.t. in the presence of Bu₄NBr (0.3~0.5 equiv.) for 8 days, the cycloadducts **3** and **4** were afforded in 40% combined yield. Raising temperature would decrease the yield and increase the stereoselectivity of the reaction (**Table 1**). The stereochemistry of adducts were determined by NMR method according to the ratio of the proton signals at C-4 (δ 6.93)

^{*} E-mail: ceszlm@zsu.edu.cn

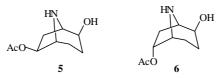

in 3 and C-4 (δ 6.76) in 4.

 Table 1
 The results of 1.3-dipolar cycloaddition reactions of the vinyl acetate and N-benzyl-3-hydroxypyridinium bromide^a

entry	solvent	Temp.	Reaction time/(d)	Products (exo/endo) ^b	Combined yield ^c (%)
1	THF	rt	8	7/ 93	33
2	THF	reflux	2	3/97	24
3	CH ₃ CN	rt	8	8/92	31
4	CH ₃ CN	Reflux	2	3/97	12
5	EtOAc	rt	8	7/93	40
6	EtOAc	Reflux	2	1/99	20
7	C ₂ H ₃ OAc	rt	8	7/93	35
8	C ₂ H ₃ OAc	reflux	2	3/97	16
a) T 1	C HOH	1 1 0000	11.1 b) 1		

^{a)} In the presence of KOH and under PTC condition. ^{b)} determined by ¹H-NMR ^{c)} isolated yield.

The major product was in endo form as shown in **Table 1**. Bao-Gong-Teng A analogue 6, can be synthesized using 4 as intermediate in shout rout⁵.

Acknowledgment

This work was supported by the Natural Science Foundation of Guangdong province (No. 970154).

References

- 1. N. Nennis, A. R. Kartrizky, Y. Takeuchi, Angewandte Chemie, 1976, 15, 1.
- 2. A. R.Katritzky, N. Dennis, G. J.Sabongi, L.Turker, J. Chem. Soc., Perkin Trans. I., 1979, 1525.
- 3. A. R. Katritzky, N. Dennis, Chem. Rev., 1989, 89, 827.
- M. E. Jung, L. M. Zeng, T. S. Peng, H. Y. Zeng, Y. Lei, J. Y. Su, J. Org. Chem., 1992, 57, 3528.
- 5. A. Banerji, S. Haldar, J. Banerji, Indian J. Chem., 1999, 38B, 641.

Received 27 March, 2001